Skip to Content
DocumentationTools ReferenceOverview

MCP Tools Overview

dev-agent provides nine tools through the Model Context Protocol (MCP). These tools give AI assistants deep understanding of your codebase.

Available Tools

ToolPurpose
dev_searchSemantic code search with snippets
dev_refsQuery code relationships (callers/callees)
dev_mapCodebase structure overview with change frequency
dev_historySemantic search over git commits ✨ v0.4
dev_planAssemble context for GitHub issues
dev_exploreExplore code patterns and relationships
dev_ghSearch GitHub issues and PRs
dev_statusCheck repository indexing status
dev_healthMonitor MCP server health

New in v0.5.0

  • Enhanced indexing β€” Arrow functions, React hooks, and exported constants now extracted
  • dev_search β€” Better coverage of modern JavaScript patterns (hooks, utilities, configs)

v0.4.0

  • dev_history β€” Semantic search over git commit history
  • dev_map β€” Change frequency indicators (πŸ”₯ hot, ✏️ active, πŸ“ recent)
  • dev_plan β€” Related commits included in context assembly

v0.3.0

  • dev_refs β€” Query what calls what and what is called by what
  • dev_map β€” Get codebase overview with hot paths and smart depth
  • dev_plan β€” Refactored to assemble context (no more heuristic task breakdown)

How Tools Are Exposed

Tools are exposed via the Model Context Protocol (MCP), a standard for AI tool integration:

AI Assistant (Cursor/Claude) β”‚ β”‚ MCP Protocol (stdio) β–Ό dev-agent MCP Server β”‚ β”œβ”€β”€ SearchAdapter β†’ dev_search β”œβ”€β”€ RefsAdapter β†’ dev_refs β”œβ”€β”€ MapAdapter β†’ dev_map β”œβ”€β”€ HistoryAdapter β†’ dev_history ✨ v0.4 β”œβ”€β”€ PlanAdapter β†’ dev_plan β”œβ”€β”€ ExploreAdapter β†’ dev_explore β”œβ”€β”€ GitHubAdapter β†’ dev_gh β”œβ”€β”€ StatusAdapter β†’ dev_status └── HealthAdapter β†’ dev_health

Tool Response Format

All tools return structured responses with metadata:

{ "success": true, "data": { "query": "authentication", "content": "1. [89%] class: AuthMiddleware..." }, "metadata": { "tokens": 245, "duration_ms": 123, "results_total": 15, "results_returned": 10 } }

The metadata field helps AI assistants understand:

  • Token cost of the response
  • Performance metrics
  • Result completeness (truncated or full)

Output Formats

Most tools support two output formats:

  • compact (default) β€” Token-efficient, markdown output
  • verbose β€” Full JSON with all details

Next Steps

Last updated on